Unsourced multiple access (UMA) is a multi-access technology for massive, low-power, uncoordinated, and unsourced Machine Type Communication (MTC) networks. It ensures transmission reliability under the premise of high energy efficiency. Based on the analysis of the 6G MTC key performance indicators (KPIs) and scenario characteristics, this paper summarizes its requirements for radio access networks. Following this, the existing multiple access models are analyzed under these standards to determine UMA’s advantages for 6G MTC according to its design characteristics. The critical technology of UMA is the design of its multiple-access coding scheme. Therefore, the existing UMA coding schemes from different coding paradigms are further summarized and compared. In particular, this paper comprehensively considers the energy efficiency and computational complexity of these schemes, studies the changes of the above two indexes with the increase of access scale, and considers the trade-off between the two. It is revealed by the above analysis that some guiding rules of UMA coding design. Finally, the open problems and potentials in this field are given for future research.